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Decision analysis is an integrated collection of formal and behavioral 

tools for solving complex decision problems. Its essential steps are to 

analyze the decision problem into a formal structure (most typically a de- 

cision tree; see Raiffa, 1968, or Brown, Kahr, and Peterson, 1974), to elicit 

fro- the decision maker or his surrogated) some relevant numbers of two 

types, probabilities and values, and then to apply suitable formal arithmetic 

that permits calculation of the expected value of each course of action under 

consideration. The result may be a decision in favor of the act with the 

highest expected utility; more often, it is an exploration of alternative 

formal structures and, within each structure, of numbers that the decision 

maker might have estimated instead of those he did estimate. These explora- 

tion processes are jointly called sensitivity analysis; most I'mal decisions 

emerging from decision analysis should be, and are, supported by sensitivity 

analyses. Although much mathematical and behavioral sophistication is re- 

quired for intelligent sensitivity analysis, it is also relatively unsyste- 

matic; sensitivity analysis is more art than science. 

The Derision Analyst's Cop-Out. Can a decision analysis be wrong? 

Throughout this paper we ignore the possibilities of arithmetical error, 

misunderstandings between analyst and decision maker, insufficiently deep 

deliberation by either, and similar potential sources of errors large and 

small that seem to offer little scope for formal analysis. The question we 

are asking is: if the decision analyst and decision maker each conscien- 

tiously and diligently performs his part in a decision analysis, and no stupid 

or inadvertent errors are made by either, to what extent and for what reasons 

can the actions resulting from it, be wrong? While the notion of "stupid 

1 
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or inadvertent error" is a bit ill-defined, -]   s  definition is sufficiently 

precise to work with for the moment. 

Any other modeling process can be wrong as a basis for action in either 

or both of two ways: the model may be wrong, in the sense of being either 

misleading or too crude a representation of the phenomenon modeled; or the 

data may be wrong, in any of a variety of ways. Presumably the same two 

possibilities exist for decision analysis. 

Yet the formal literature of decision analysis is remarkably quiet about 

these possibilities. About the possibility that the model may be wrong, 

decision analysis have maintained virtually complete silence (though a recent 

unpublished paper by Brown may be an exception). Abo-;' the possibility that 

the data may be wrong, decision analysts have been more helpful; they have 

offered a few consistency rules, mostly those of formal probability theory, 

that judged numbers obtained from decision makers or their surrogates should 

obey. 

These rules enforce consistency, not good sense; they are exactly as 

usable by the inhabitant of the local asylum who, believing that he is Napo- 

leon, wishes to plan his reconquest of Europe as by the breakfast food magnate 

who wishes to plan the marketing strategy that will put a txu of Munchy- 

Scrunchy-Wunchies on each of a billion breakfast tables within the next year. 

This silence about wrong models and near-sil-jnce about wrong data is not 

accidental. It arises from a line of reasoning that, though in a sense we 

subscribe to it, we shall call by i pejorative, provocative name: the De- 

cision Analyst's Cop-Out. 

The Decision Analyst's Cop-Out grows out of a set of methodological 

principles: 

m——«^II  i   



"^■^■»■•ipwppppwni^^WPiiWP^P»»^«^ • >j    iimimw^mfpmmm \ nm^immn^mimmm^^^rm'*"   ui»in»niii»  •■ 

■•    *•'      »«- 

1. Values are inherently subjective; and the values that should be 

maximized in making a decision are those of the decision maker. (Through- 

out this paper we shall use the words "value" and "utility" interchangeably to 

mean subjective value.) 

2. Probabilities are inherently personal, in the sense that they de- 

scribe orderly opinions about the likeliness of uncertain events; and the 

opinions that should be used in making a decision are those of the decision 

maker. 

3. The function of decision analysis and of the decision analyst is tc 

help the decision maker to make wise decisions by helping him to understand 

the ideas of decision analysis, by helping him to model his problem in decision- 

analytic form, by helping to translate his values and probabilities into 

explicit, numerical form, and by checking for logical consistency within and 

between opinions, values, and actions chosen. 

4. A wise decision, in the contexts to which this paper applies, is one 

that maximizes expected utility. An implication of this definition is that 

wise decisions can lead to unfortunate or even disastrous outcomes. Every 

decision under uncertainty is in effect a bet, and any bet can be won or lost 

(intermediate outcomes are usually also possible), 

5. By the use of suitable elicitauon techniques, the decision analyst 

can elicit from the decision maker an accurate representation of his model of 

his decision problem and numbers that accurately represent his values and 

probabilities. 

While no decision analyst would, we trust, accept these principles in 

quite the blunt form we have used above, the typical modifications would be 

of tone, emphasis, and softening of claims for precision, rather than of 

" '"■- -■ —•  
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substance. If these principles are a caricature, they are an easily recog- 

nizable one. 

Now we can state the Decision Analyst's Cop-Out explicitly: given the 

above principles a decision analysis cannot be wrong. 

The logic is obvious enough. The model of the problem is the decision 

maker's, not the analyst's. The same is true of values and probabilities. If 

the analyst ha«; been sufficiently assiduous at his elicitation tasks, then all 

three will be suitable representations of the inside of the decision maker's 

head--and that is the only test of representation they are required to meet. 

If the actions chosen are consistent with the results of the analysis, ar4 the 

numbers obey the appropriate consistency rules, it makes no difference whether 

others would consider these actions and numbers wise or foolish, or whether 

they lead to happy or unhappy results; they maximize the expected utility of 

the decision maker, and that is all they are called on to do. 

In short, the only explicit test of the adequacy of a decision analysis 

is obedience to internal consistency rules. Others may criticise models, 

numbers, or both, but such criticisms are in principle irrelevant (though in 

practice every analyst would take them seriously indeed). 

Given this line of reasoning, why would a decision analyst undertake a 

sensitivity analysis at all? There seem to be two answers. One is ir.cel- 

lectual curiosity. The other is that no decision analyst really believes 

Principle 5. He is never entirely sure that he has elicited exactly the right 

model structure, or exactly the right numbers, from the decision maker, and so 

he wishes to reassure himself that minor errors of these kinds would make 

little difference to the outcome. Virtually always, such reassurance is 

provided. 

■-- 



i«iH.i IIHW IM ■■nil i    i iiamn •^>«>p^mHl^Pw^w»v>I*MM.«liiu ■ i   ii «m inimmr^mim^^m^mmi^mmmin—^i^mmm^m 

Can we escape from the Decision Analyst's Cop-Out? To escape from the 

intellectual trap outlined above, one must reject or modify one or more of the 

five methodological principles from which it derives. Principle 1 dates from 

the Greeks and is a cornerstone of disciplines ranging from ethics (where 

everyone seems agreed that it is wrong, but few agree about wny) to economics. 

Principle 2 is the fundamental tenet of the personalist Bayesian school of 

probability. While it has provoked much modern debate (see for example 

Savage, 1954; Edwards, Lindman, and Savage, 1963; and references cited there- 

in), we believe that the Bayesians have clearly won the argument. No intel- 

lectually viable set of identification rules for probabilities alternative to 

those implied by Principle 2 has yet been proposed, so far as we know. 

Principle 3 is of relatively minor importance; it probably is no more 

than a consequence of Principle 1. We included it in our list more to give 

the intellectual flavor of the Decision Analyst's Cop-Out than because of any 

logical role it plays in that line of reasoning. 

Principle 4 seems to us beyond question, given two conditions that are 

assumed throughout this paper. One is that the decision problem is a Game 

against Nature, which simply means a decision in which the concept of a 

hostile opponent whose actions depend on those of the decision maker plays no 

significant role. The other is that the stakes are not so large as to include 

the possibility of ruin or quasi-ruin. (Actually, both restrictions ran be 

removed by appropriate interpretations of the notions of utility and proba- 

bility, but the topic is complex and irrelevant to the  purpose of this paper.) 

Principle 5 is obviously the most dubious one. As we have already said, 

no one would believe it literally, except pen.aps a radical behavior!st--and 

radical behaviorists who are decision analysts are rare indeed. If the 

f 
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decision maker's "true" value and probability are u and p respectively, an 

elicitation procedure may well cause him to estimate u'  ?« u and p' f p.    Both 

u'  and p' may pass all  relevant internal consistency tests.    If the differ- 

ences are large, the analyst would expect to discover them by various checking 

procedures, but if they are small, he might not.    Of course, intuition sug- 

gests that small differences in such elicited numbers are unlikely to lead to 

large differences in the expected utilities that are the near-final outputs of 

a decision analysis—and we have recently proven exactly that under very 

general conditions (von Winterfeldt and Edwards, 1973b).    The maxima of de- 

cision analysis are flat.    Relatively substantial  deviations between "true" 

parameters and those used in making a decision-analytic calculation will 

typically produce relatively minor reductions, if any, in expected utility of 

the action chosen from the expected utility that would have been produced by 

the best criterion had the "true" parameters been used. 

But Principle 5 covers not only values and probabilities, but also 

models.    Here the chances for error seem to be, and are, much greater.    As a 

matter of realism, we are skeptical about the idea that decision makers have 

explicit models of their problem in their heads, waiting to be elicited. 

Instead, they have ideas, of widely varying degrees of coherence,  intelli- 

gibility, and appropriateness, about the nature of their problem.    The de- 

cision analyst may indeed elicit these ideas, but typically it is he, not the 

decision maker, who formu'ates from them and from other available information 

an explicit, well-defined model  of the decision problem.    And as a matter both 

of realism and of good sense, he is more likely to worry about whether the 

model  fits the problem than about whether it fits the decision maker's ideas 

about that problem—though obviously both kinds of fit are important.    (This, 

of course, violates Principle 3.) 

>^M 
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This paper is about a rather subtle set of errors that can occur in 

modeling decision problems, and that can lead to very large errors in the 

resulting analysis. In concept these errors are not subtle: they consist of 

failing to use information, or using it inappropriately, to modify probabili- 

ties. The main point we moke is that such errors can, and ordinarily will, 

lead to use of dominated strategies, and so can lead to grossly suboptimal 

actions. The reason why we consider such errors subtle is that they are 

relatively difficult for the decision analyst to discover. He often must rely 

on the decision maker to specify what information is relevant to a decision, 

and what that information means. Decision makers, unfortunately, often ignore 

relevant information, or use it in grossly inappropriate ways. 

In what follows we will be considering only cases in which selection 

of an information source and quality of information processing are not ex- 

plicitly modeled within the decision analysis. Only in the absence of 

such modeling can unrecognizable uses of dominated strategies occur. 

Why, then, would anyone perform a decision analysis in which choice 

of information source and information processing technique were left out? 

Often, they are left out because the information required to model them is 

unavailable. This is especially likely if the information ernes from or 

is processed by a hurmn being. Indeed, in the example of Fryback's (1974) 

study that led us to consider this problem, one conclusion of the study was 

that different radiologists differ greacly in their ability to extract in- 

formation from a particular kind of radiograph. After the study, one might 

well know that it was far better to ask radiologist X to read the film than 

to ask radiologist Y--but before the study, or in its absence, how could 

one know that Y was sufficiently inferior to X so that any strategy based 
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on Y's readings would be dominated by any admissible strategy based on X's? 

In the absence of this kind of information, it is easy to have bad luck in 

choice of an information source without knowing it.    In thir  paper, we have 

called such bad luck dominance and have chosen to omit the selection of an 

information source from the formal analysis.    It would instead be possible 

to draw the decision tree in such a fashion as to include the choice between 

A and Y as one of the decisions (or, mere realistically, as one of the random 

events cor trolled by Nature).    For the analysis, little would be gained by 

doing so fn the absence of any information about the relative skills of X and 

Y.    However, if that were included as a specific choic",  then a strategy that 

includes having Y read the radiogram would appear    s bad luck, rather than 

dominance.    (The extreme case of this argument is decision making under 

certainty, in which all  strategies but one are dominated.) 

Our point, tnen, is fundamentally that poor information, or poorly pro- 

cessed information, can lead to severely painful  consequences.    Whether one 

calls this dominant' or bad lu^k is fairly irrelevant.    Either way, it is a 

major source of loss in decision analyses, and a major exception to the general 

principle of flat maxima that applies elsewhere in such analyses. 

We do not mean to imply that every decision analysis has built into it 

the possibility of major loss, avertable only by great expertise and perfect 

information processing.    Indeed, in many decision environments cost of in- 

formation is positively related to its benefit.    Even if the information 

acquisition and processing aspects of the problem are not modeled, this 

trade-off may mean that the .onsequences of inferior information are offset 

by the fact that poor information is cheaper than good information.    Of 

course this is not always  true; radiologists X and Y charge the same fees. 

■ 
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Since this paper is about error, it is also about sensitivity analysis, 

the decision analyst's most important tool for discovering and correcting 

errors.    We believe that some strategies for allocating sensitivity analysis 

effort, and even some specific tools, grow out of the arguments to be presented 

--though by nc means enough to change sensitivity analysis from art to science. 

Social Decision Making.    This preview of error in decision analysis would 

►•e severely incomplete if it did not at least mention the most serious source 

of error of them all:    The fact that for many decisions the concept of "the 

decision maker" that is embodied in Principles 1-5 is just not applicable. 

Most decisions affect ma. / people, not just one.    Some are made by many 

people; perhaps working cooperatively, perhaps not.    Even a single decision 

maker is likely to explore the values and probabilities of others before 

making a socially important decision.    Often, the most important kind cf 

service he might want from a decision analyst (a service, alas, that may not 

be available for lack of necessary conceptual  tools) is that of reconciling or 

otherwise dealing with conflicting values and/or probabilities. 

Re-examine for a moment Principles 1-5 with some major social decision, 

such as imposition of gasoline rationing, in mind.    The relevant values are 

those of everyone affected; some undefined amalgam of them should presumably 

be maximized, but no one knows even how to define, much less how to calculate, 

that amalgam.    While virtually all of those affected will  have opinions about 

the questions of uncertainty that bear on the decision (e.g., will  there be 

another war between Arabs and Israelis), most of those opinions will  be worth 

less as a basis for action, except insofar as they constrain or bias the 

action options or influence the relevant values.    The opinions worth con- 

sidering will  be those of a relatively small community of experts, most of 

whoni have studied the problem for years.    The decision maker, if th^re is one, 



pp""«"11  "UP
1 JIH"I«II mr*v*mmmmmm**mrmi^**i*mm*m**<*r —--~" 11   " " l^WWW^pil^^WP« 

■ 
10 

is seldom a member of that community; indeed its members usually have infor- 

mation about the topic that the decision maker cannot hope even to read, much 

less to understand. If the community of experts agreed, the decision maker 

m'yht be able simply to treat their opinion as his own. But members of such 

communities of experts typically disagree. Again, some aggregation process is 

needed, but no one knows what it is. Finally, the decision analyst, if he is 

to be a responsible member of the decision-making team or organization, cannot 

limit his role to effective use of the formal tools of his trade. His job is 

the same as that of each other member of the team: by hook or by crook to see 

to it that the wisest available actions get taken. Obedience to consistency 

rules is far from enough! 

Many of the issues raised in the preceding paragraph are under current 

study. A few rudimentary tools exist; more can be foreseen. In the absence 

of a well-developed theory and technology of social decision making, we cannot 

hope to analyze sources of error in that technology. This paper consequently 

applies only the concepts behind the technology of individual decision making 

to the study of the error-producing potential of that technology. That is 

our cop-out. 

Mi ■MMkJ 
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Large Losses in Decision Analysis 

The Puzzle of flat Maxima and Large Losses.    We recently discussed some 

of the possibilities for error i" decision analysis  in our treatment, of flat 

maxima  (v. Winterfeldt and Edwards, 1973a and b).    We showed that under some 

relatively mild assumptions, so we thought, suboptimal  probabilities, values, 

or model  parameters in a decision analysis will  lead to only minor losses in 

expected utility.    Loosely sptäkinc^, once a decision problem has been properly 

formulated and once grossly inappropriate (by which we mean dominated or 

cardinally dominated) strategies are elinnnated from consideration, the mathe- 

matical  properties of the usual maximization processes impose severe restric- 

tions on the functions used to evaluate available action or decision strategy 

alternotives.    These restrictions almost always result in rather flat func- 

tions in the "neighborhood" of the optimal decision or decision strategy. 

It takes large errors of the numbers entering into the analysis to lead to 

choices of actions or strategies outside of that neighborhood; and within it, 

reductions of expected value from the optimal expected value are quite small. 

A 10 percent reduction would be unusually large. 

Proper scoring rules  (see Murphy and Winkler,  1970), signal  detection 

tasks  (see Green, 1967), and decisions about optimal  sample sizes  (see 

Schlaifer, 1969) are well  known to have this sort of flat-maximum property; 

and although we know of no convenient reference, it has been common knowledge 

among decision analysts tfa:  changing model  parameters often produces only 

minor chonye: in the result of a decision analysis. 
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Nevertheless, real world decision making reminds us that substantial 

losst- ran and do occur. Individual instances can be attributed to bad luck; 

good decisions can of course lead to bad outcomes. But such bad luck should 

average ouc as instances accumulate. So we were especially impressed by 

Fryback's (1974) finding that in a real-world medical decision problem, al- 

though the functions showing the relation between size of error in decision 

strategy and resulting loss in expected utility were even flatter than we 

might have expected a priori in a loiUj series of cases the doctors were 

actually obtaining only a little more than 50 percent of the expected utility 

obtainable by the decision-theoretically optimal procedure. 

On reflection, we realized that our flat-maximum analysis had failed to 

deal with two important facts. One is that real decisions are typically made 

without proper prior decision-analytic, structuring, and in particular without 

prior elimination of grossly inappropriate decisions or strategies. The other 

is that the flat-maximum ideas apply only to the decision making part of a 

decision analysis, not to the information processing part  Neglect or in- 

efficient use of information can in effect create dominated strategies, not 

recognizable as such from inspection of payoff matrices or decision trees, and 

can make these dominated strategies seem optimal. 

Dominance and the intimately related concept of admissibility are the key 

concepts in these instances of large losses. In the following sections we 

first define, classify, and relate concepts of dominance and admissibility. 

Then we show that inefficient use of information leads to dominated strategies 

and use of dominated strategies leads to substantial losses. Finally, we 

examine implications for the design of decision analysis and for decision 

theoretic thinking in general. 
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Our discussion is bas(;d mostly on sotre well  known theorems of statistical 

decision t.heor}.    If not explicitly stated and proved here,  they can be found 

in various of the following sources:    Blackwell and Girshick,  1954; Lehman, 

1959; r,ciffa end Schlaifer,  1961; Ferguson,  1967; and DeGroot, 1970. 

definitions and Assumptions.    Ihe first seep in an analytic treatment of 

a coiTJlex decision problem is to structure rhe problem in the form of a de- 

cision tree or some equivalent description.    A decision tree consists of 

iecision nodes and chance nodes.    At each decision node the decision n.aker 

decides between alternative courses of action.    At each chance node a proba- 

bilistic process determines which state of nature or which value of an ob- 

servation variable obtains. 

It is useful to define an exhaustive set of the three kinds of acts that 

can be available to a decision maker at a decision node: 

1. Acts that directly produce a riskless  (but possibly multi- 

attributed or time variable) outcome.    We will call  the set 

of outcomes A with typical elements ?., b, c,  ... 

2. Acts that will result in some outcome element from A, which 

element depends on which state of nature obtrins.    Such 

acts are also called gambles, and we will denote the set 

of gambles as G with typical elemnents i, b, £,  ... 

3. Acts that first result in the acquisition of an observation. 

We will call the set of possible observations X.    Upon obser- 

vation of a particular value x.  in X a preselected function 

(decision rule) determines which element of the set G to choose. 

Such acts are also called decision functions, and we will de- 

note the set of decision functions as Ü with typical elements 

a, D, c,  ... 
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At each chance node either of two random processes may occur: 

1. A process which selects from the states of nature S a partic- 

irar e ement S.. 

2. A process which selects from the set X of (.Sservations a 

particular element x.. 

(Some of the following definitions require the sets X and S to be 

finite. This assumption will be made from now on unless especially 

noted.) 

A simplified decision tree in which all three types of acts are repre- 

sented is sketched in Figure 1. 

Insert Figure 1 about here 

The tree structure suggests the following representation of outcomes, 

gambles, and decision functions as real numbers, vectors, and matrices: 

1. Outcomes: An element a in A is called an outcome. Elements in A are 

evaluated according to some real valued function U : A -* R which preserves 

the order of preferences among outcomes. For simplicity of notation, we will 

assume that A is real valued and that U(a) = a. 

2. Gambles: An element in G is called a gamble. A gamble is an n- 

element vector of elements in A: 

£= (9|i 92» •••♦ 9,. •••. 9nh 9^ A, where g. is the outcome which the 

decision maker receives if the i-th state of nature obtains. We assume that 

the expected value of such gambles preserves their preference order. The 

expected value is defined as 

EV (£, f) ^ ffS^g. (1) 

mm MIMMMlfa^** 
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where f is the probability distribution over the states or nature. 

3. Decision functions: An element d in D is called a decision function. 

A decision function d : X -► G is a function from the observation variable into 

the set of gambles. If X and S are finite, a decision function can be de- 

scribed by an n x m matrix of elements in A in which the row d(x.) is an 

element in G which the decision maker selects if the observation variable 

has value x.. 
J 

d = 

'n '21 dil 

dlj   d2j ••• dij ••' dnj 

d-i    cL, ... d ■  ... d 
Im   2m     im     nm 

d (x,) 

IW 

=  m 

dijE: A , d {*.) z  G 

We assume that the expected value preserves the preference order over decision 

functions. The expected value of a decision function is defined as 

m 
EV (d.f) = I     f(S.) E  g(x.|s.) d.. 

i=l    1 j=l    J 1  1J 
(2) 

where f is the prior distribution over the states of nature, and g(X|S.) are 

the respective conditional distributions over the observation variable X. 

The preceding discussion sounds as though observing, and processing the 

resulting information, were assumed to be costless. They are, but with no 

loss of generality. Given additive utilities, which are assumed throughout 



"*P" r-"— m^mmmm******" ■ ' ' > < i u ■      n "«•»^»"^     I  1  I     1        I  nn ^w« 

mw 

16 

this paper, the utility cost of an observing-and-processing procedure can be 

subtracted from the utility payoffs associated with *>ach possible ultimate 

outcome of that procedure. If that has bten done, no further attention need 

be paid to the cost of that procedure in the analysis. 

To illustrate the concepts of outcomes, gambles, and decision functions, 

consider certain amounts of money as outcomes. Let 

A = { $1, $2, $3, $4, $5, $6, $7 }. 

Let two mutually exclusive and exhaustive states of nature, S, and S?, deter- 

mine which outcome the decision maker will receive. A gamble is then of the 

form £ = (a,b), where the decision maker receives amount a if state S, oLtains, 

b otherwise. Assume that the decision maker has the option to select one of 

the following gambles: 

G = {(2,3); (2.f){ (3.5); (6,4); (7,3); (1,1)}. 

To explain the 'doa of a decision function, assume that before choosing a 

gamble the decision maker can observe a random variable X which can obtain 

either of two values x, or x,,. The probability distribution over X depends 

on the state of nature S.. Let 

g(x1|S1) = l-g(x2|S1) md 

h(x1|S2) = l-h(x2|S2) 

describe the two distributions. 

The following are examples of the 36 possible decision functions among 

which the decision maker can select: 

k 
2, 3 

2, 3 

_ 
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i ■ 
3, 5 

,7,  3 

it - 
7, 3 

2. 6 

For example, in d^, the decision maker would select the gamble (7, 3) if x, 

occurs, and gamble (2, 6) if x^ occurs. Thereafter hs will receive a specific 

amount in A depending on which state of nature is true. 

Now assume that the decision problem is specified by three possible 

courses of action : 

1) take $3 for sure; 

?)  select any of the six gambles in G; 

3) select any of the 36 decision functions in D. 

The optimal course of action depends, of course, on the prior distribution f 

over the states of nature, and on the conditional distributions g and h. 

Given the knowledge of these distributions, the decision maker can determine 

the expected value of each course of action. As an expected value maximizer 

he should select the course of action that guarantees him the highest ex- 

pected value. For example, let 

f^) ■ \  ; f{S2) - i ; 

1 g(x1|s1) - } ; iCXjIS,) =f 2 3 ' 

h{x1|S2) = | ; h(x2|S2) ■ £ 1 
3 ' 

The expected value of the first course of action is $3, independently of the 

distributions f, g, and h. The expected value of the second course ^f action 

is that of the gamble in G which has maximal expected value. In our example 

(6, 4) and (7, 3) have the maximal EV with 

' 
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EV (6, 4) - [ (6+4) = 5 = EV (7, 3) = i (7+3). 

Among the 36 decision functions two maximize expected value. From the general 

expected value formula for H^cision functions (see p. 13), it follows that 

the expected value of a decision function in our example is 

EV(d)=|[i(dn)+f(d,2)]ti[f (d2,)4(d22)]. 

an expression which is jointly maximized by the two decision functions 

2 6 
>1 

and 

k 

7  3 

6 4 

7 3 

with 

EV(d1) = [ [ j (2) + | (6) ] + i [ | (7) + i (3) ] = 5.16667 and 

EV^) =4 [ T (6) + | (4) ] + ^ [ | (7) + 1 (3) ] = 5.16667. 2 L 3 

Therefore, the decision maker should select the third course of action, 

since the best decision functions have a higher expected value than the best 

gamble, which in turn has a higher expected value than the sure amount $3. Of 

course, this conclusion holds only for the specified distributions f, g, and 

h. 

However, even in the absence of any knowledge about f, the decision maker 

can make some evaluation of the decision alternatives by assessing the value 

or the expected value of gambles or decision functions conditional on the 

assumption that the true state of nature is S.. We will call these conditional 
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evaluations the conditional  values of gambles and decision functions, and we 

define theiü formally as: 

Definition:    Conditional values.    The i-th conditional  value of a gamble 

cjeG is defined as 

CVi  (£) - gi       ; (3) 

the i-th conditional  value of a decision function deD is defined as 

m 
CV.(d) =      E      g(x  |S  )d 

1 - j-1 J    1    1J 
(4) 

We can now describe gambles and decision functions as vectors of conditional 

valuec. We will call the set of conditional value vectors of gambles G and 

the set of conditional value vectors of decision functions D. Sometimes we 

will consider the set of all possible probability mixtures of gambles, denoted 

as G, or of decision functions, denoted as D. The set of conditional value 

vectors of G and D will be written as G and D, respectively. 

Figures 2 and 3 are plots of conditional values of gambles and decision 

functions in our examples. The points in these plots constitute G and D, 

respectively. The conditional value vectors of probability mixtures of gambles 

and decision functions, G and D, lie in the closed and convex region defined 

by the points in G and D, Conversely, any point within that region is a 

conditional value vector for some probability mixture of gambles or decision 

functions (see Ferguson, 1967). In that sense, the shaded areas in Figures 

2 and 3 describe G and D, respectively; that is, they define the set of all 

possible points equivalent in expected value to probability mixtures of G and 

D. The circled points in Figure 3 show where the conditional value vectors 

of gambles lie in D, 

»M 
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Insert Figures 2 and 3 about here 

The following implications should be obvious (s^e Blackwell and Girshick, 

1954): 

Lemma 1 G C G 

D c 5 

G c D 

G c D 

The last result follows by letting d(Xj) ■ SL for a11 J- 

The following definitions are stated for decision functions only, but they 

app y - mutatis mutandis - to gambles also. 

Definition: Ordinal dominance. A d-cision function ecD is said to be 

ordinally dominated, if there exists another decision function deD such that 

CV. (d) > CV: (e) for all i; 

CV.  (d) > CV.  (e)    for at least one i. 

A stronger and more useful definition is the following. 

Definition:    Cardinal dominance.    A decision function ecD it Sc id to be 

cardinally dominated, if there exists another decision function dcD such that 

CV.  (d) > CVi  (e)    for all  i; 

CV.  (d) > CV.  (e)    for all  least one i. 

From lemma 1  it follows that an ordinarily dominated decision function 

is also cirdinally dominated, but the converse need not be true.    If a decision 

mmm 
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function is either ordinally or cardinally dominated, it is simply called 

dominated. 

Definition:    Admissibility.    A decision function deD is said to be 

admissible if it is not dominated. 

Note that all definitions require strict reference to the sec of decision 

functions D under consideration. 

In our example, the decision function 

1. l' 

1. 1 
with conditional value vector (1,1) 

is ordinally dominated, for example, by 

f3. 5' 
d = 
"     !3, 5 

The decision functions 

with conditional valus vector (3, 5). 

'6, 4 

*= 

.6' 4. 

'2, 6| 

£2 = 

3, 5 

with conditional value vector (6, 4) and 

with conditional value vector (8/3, 17/3) 

are not ordinally dominated, but they are cardinally dominated. In fact, only 

the following five decision functions are admissible (not cardinally dominated): 

k- 
2, 6 

2, 6 
;     <k- 

2, 6 

«• 4- 

;        dj« 
2, 6 

7, 3 

^ 

'6, 4' 

7,  3 
'        k- 

'7, 3' 

7, 3 

which can be easily inferred from Figure 3. 

It is a well known result in statistical decision theory that in selecting 

decisions or decision functions that maximize expected value, the decision 

,    — .- ■ 
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maker can restrict himself to admissible gambles or decision functions. (See 

for example, Ferguson, 1967; DeGroot, 1970.) Furthermore, the following 

result by Blackwell and Girshick (1954) allows us to restrict our attention 

to decision functions only, when selecting among gambles and decision functions: 

Lemma 2   Let d be an admissible decision function with d(Xj)cG for all 

j. Then d cannot be dominated by a gamble gcG. The proof follows immediately 

from lemna 1 which established the fact that G ^ 6 C D. These implications 

can be checked in our example in Figures 2 and 3. 

Practically this means that a decision maker can always achieve at least 

as high an expected value by first observing a free observation X and then 

selecting his final gamble according to some admissible decision function 

as he can by choosing amom; admissible gambles directly without observing X. 

Consequently, we will hereafter discuss decision functions only and treat 

gambles as a special case of decision functions in which d(x..) is a constant 

function. As a generic term for decision functions or gambles, we will from 

now on use the term decision. 

Losses Caused bv Choosing Inadmissible Decisions. TMs section will give 

a sho-t summary of our flat maximum arguments (v. Winterfeldt and Edwards, 

1973b), and we will show that these arguments do not hold for dominated de- 

cisions. In our original treatment of flat maxima we asserted that if 

1. S is finite; 

2. A is bounded; and 

3. D consists of admissible decisions only, 

then the losses the decision maker will  incur by selecting a suboptimal de- 

cision or by using incorrect model  parameters will  typically be small.    Basi- 

cally our argument was this.    If all decisions are admissible, then each will 

maximize expected value with respect to some prior distribution f over the 

-MMH^M 
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states of nature (see Ferguson, 1967). Or, to put it in simpler terms, ad- 

missible decisions are potential candidates for optimal decisions. Conversely, 

for each prior distribution f over S there exists at least one admissible 

decision that maximizes expected value with respect to that distribution (see 

Ferguson, 1967). For a prior distribution f we defined a function EV*(f) as 

the maximum attainable expected value for that prior distribution. By the 

property of the expected value maximization model this function EV* will be 

convex and by assumption it will be bounded. All losses a decision maker 

can incur in a decision problem are then defined as differences between this 

convex and bounded E"* function and its supporting hyptrplanes. From the 

convexity and boundedness of EV* we concluded that these losses are severely 

restricted in the area of an optimal decision or true parameter. These re- 

strictions typically mean rather flat expected value functions around the 

optimum, as we have demonstrated in numerous examples (see v. Winterfeldt 

and Edwards, 1973a). 

What, however, will happen, if the decision maker selects a dominated 

dec's ion? Let e be the dominated decision, f be the prior distribution over 

the states of nature, d be an admissible decision in D that dominates £. Let, 

further- re d. be tne optimal decision among the admissible OficS. (Note that 

^ does not necessarily dominate e). In this case the expected loss will be 

n n 
EL(e,f) ■ I    f(S.) [CV.(df) - CV.(e)] > E f(S.)[CV.(d) - CV.(e)]    (5) 

in which by dominance 

CV-td) La.  (e) for all i ; 

CV^d) > CVi (e) for some i 

-_■■ 
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There are, of course, no restrictions on the form of these losses within the 

boundaries of A. 

These arguments can be demonstrated in our example problem. Figure 4 

shows the expected value of the five admissible decision functions as a 

function of f(S,). Losses due to the selection of a suboptimal, but admissible 

decision function are typically small, as long as the decision functions are 

adjacent (in th€' sense that their corresponding EV-maxi mi zing prior distribu- 

tions do not differ substantially). Also, we plotted the expected value for 

two dominated decision functions: 

* 

1, 1 

1. 1 
and h = 

1, 1 

2, 6 

Figure 4 shows quite clearly that losses due to the selection of a dominated 

strategy can be quite substantial, regardless of the prior distribution. 

Insert Figure 4 about here 

We will now show that we can separate out two components of (5), one 

that can be attributed to the fact that e is dominated, and one that results 

from the suboptimality of an admissible decision, which is - in some sense - 

equivalent to the dominated decision e. 

Definition: Admissible equivalent. An admissible equivalent of a 

dominated decision (teD is an admissible decision g^D such that 

CV^e) = CV^e) + c     for all i. 

The admissible equivalent is determined by translating the conditional values 

of the dominated decision by a constant amount c, such that the translated 
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conditional values match those of an admissible decision. If an admissible 

equivalent exists, c must be unique, since neither smaller nor larger values 

could be conditional values of an admissible decision. Under some well known 

conditions (D is closed, bounded, and convex), it can be proven that for 

each dominated decision £ in D there exists an admissible equivalent ^ in D. 

This condition will be satisfied, whenever A and S are finite (see Ferguson, 

1967). 

Another interpretation of an admissible equivalent e is that its hyper- 

plane as a function of f, which is defined by 

EV(e, f) - I    f(S.) CV. (e) 
i=l   1   1 - 

(7) 

is parallel  to the hyperplane of e defined by 

EV(e, f) ■    i    f(S.) CV.   (e) 
i=l        1 

with the former hyperplane being some tangent hyperplane to EV*. 

Now assume again that f is the correct prior distribution, df is the 

optimal decision, but that the decision maker selects the dominated decision 

e. His loss, according to (5) will be 

EL(e, f) = I    f{S.)  [CV-ld ) - CV (e)] 
i=l   n 

which can be partitioned as follows: 

EL(e, f)  =    I    f(S.)  [CV.(df)  - CV.(e) + CV.   (t)  - CV^e)] 
.=1 ! 1   -T 

=    E    ftSj  [CV.(e)    -CV.(e)]+    £    f (S. )[CV .(d )  - CV .(ej] 
i=l        1 1 = 1 i=l        1       1 "T 1 

(8) 

O) 

^^mm 
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(10) 

The first part of this loss can be attributed to the fact that e is 

dominated and that the decision maker did not select the admissible equiva- 

lent g.    The last part indicates the additional loss due to the suboptimality 

of the admissible equivalent e. There are, of course, no restrictions on the 

first part of this loss, except for the boundedness of A, but the second part 

is again subject to the flat maximum property. 

Figure 5 demonstrates the notion of an admissible equivalent and the 

partition in expected losses in the example dec si on orcblem. The admissible 
1, I7 

equivalent of thi decision function     e 
2, 6 

must be a randomized 

decision function from D, since no pure decision function has an expected 

value function (as a function of f) which is parallel to that of e. The graph 

shows, how dominance (c), and suboptimality among the admissible decision 

functions (A) sum to the total loss. It also highlights the fact that the 

loss due to dominance in the definition of admissible equivalents is inde- 

pendent of the prior distribution. 

Insert Figure 5 about here 

We could, of course, partition the loss due to the selection of a 

dominated strategy in other ways than through the use of an admissible equiva- 

lent. In fact, we will do so, whenever e itself is admissible in a subset 

E C D. Put in the absence of such a reference set E, the partition in (10) 

is not only plausiLle, but also convenient, since the loss due to dominance, 

c, is independent of the prior distribution f. 
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We will now turn to another possible partition of (5): 

Definition: Optimal equivalent. Let £ be a subset of D. Let gf be 

admissible in E but dominated in D. Let f be the pnor distribution such 

that gr  is optimal in E. An optimal equivalent of JL- e E is a decision 

d e D which is optimal in D with respect tu f. (Note that the optimal equiv- 

alent need not be unique.) 

Assume now that the decision maker has decisions D available to him and 

that the prior distribution is f. Assume further that he selects a decision 

e , which is dominated in D and admissible but suboptimal in E. Let e. be the 

optimal decision in E with respect of f, and let d. be its optimal equivalent. 

By selecting j> instead of c^, the dtclslOfl maker made two mistakes: 

First, restricting himself to the admissible decisions in E, he chooses a 

suboptimal one, and second, even the optimal one in E would be dominated by 

its optimal equivalent in D. His actual expected loss can be partitioned ac- 

cordingly: 

I 

EL (ij. f) - EL (^ df) + EL (gg. If) 

■ { EVE* (f) - EV (eg, f) } ♦ 

+ { EVp* (f) - EVE* (f) } (11) 

Note that EV* is defined in its restrictions to E and D, respectively here. 

Just as in (10), the first loss reflects suboptimality among some admissible 

set, which is subject to the flat maximum property; and the second loss re- 

flects dominance and is unrestricted. 

Figure 6 illustrates the concepts of an ootimal equivalent and the parti- 

tion in expected losses resulting from this definition using two hypothetical 

■-'"■■ 



I 
i M.iimiinuuai^m<i^miiniiiJP «■MP^v^^mpPMWPnimMBw   ■  ■   "■■■MP*««IH wmfm^^^immmmrmmim*» ni"   m^^m^*K**mi 

28 

' 

EV*- functions for a two state, infinite act decision problem. The losses are 

indicated for the case in which the true prior probability ffS,) = .3, but the 

decision maker selects a decision function which would be optimal among the 

dominated (but in themself admissible ones) under a prior of .5. 

Insert Figure 6 about here 

Inefficient Information Use and Dominance 

We can now link the concepts of dominance and admissibility to the con- 

cept of efficiency of information use. We will show that for three plausible 

definitions of efficiency of information use, less efficient information use 

leads to decision functions that are dominated by decision functions based on 

more efficient information use. This means that a decision maker who pro- 

cesses information inefficiently, or ignores it altogether, selects dominated 

decision functions. Using the partitions defined in the previous section, 

we can then argue that some losses in a decision analysis can be attributed 

to inefficient use of information, and some losses can be attributed to sub- 

optimal decisions among admissible ones. While inefficient use of information 

can lead - via dominance - to quite substantial losses, suboptimal admissible 

decision strategies will typically result only in small expected losses. 

Our first definition allows us to compare information sources only if 

one source is completely redundant with respect to the knowledge about the 

states of nature given knowledge from the other source. But whenever infor- 

mation sources can be compared in terms of this derinition, the results are 

very general and totally independent of the payoff structure. 

MM ^^—^^_ 
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Definition: Redundant information source. An information source X is 

said to be at least as informative as an information source Y if and only if 

h(Y|S,X) = g(Y|X) 

This definition and the resulting ordering of information sources in terms of 

their efficiency is discussed in Marschak and Rai'n» r (1972) following the more 

general treatment in Blackwell and Girshick (1954). 

Let D be the set of decision functions based on X, and let E be the set 

of decision functions based on Y. Blackwell and Girshick (1954, THM 12.222) 

prove that, if X is at least as informative as Y, then E^C D. Marschak and 

Radner (1972) give an informal proof that if X is at least as informative 

as Y, then for any prior distribution f the optimal decision function based 

on X is at least as valuable (in terms of EV) as the optimal decision func- 

tion based on Y. From both theorems the following theorem follows immedi- 

ately: 

Theorem 1: If X is at least as informative as Y, then for any decision 

function g in E, there exists a decision function d in D, that either has 

the same conditional value vector as ^ or dominates g. 

The notion of a redundant information source does not lead to an ordering 

of all information sources, but merely to a partial ordering. Whenever two 

information sources can be compared in this way, however, we can reach strong 

conclusions about the resulting expected losses, without assuming any partic- 

ular payoff structure. The main result is, of course, that admissible de- 

cision functions based on the less informative information will at best be 

equivalent and will usually be dominated when compared with admissible de- 

cision functions based on the more informative information source. Following 

^^M 
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the concepts in the previous section we can then partition any losses encoun- 

tered in a particular decision problem into an (unrestricted) part due tc 

inefficiency of information (=dominance) and a restricted part due to subopti- 

mal  decision making. 

Of the many examples of less informative information, the most common 

arise if the less informative information differs from the more informative 

by deletion of content only.    This can occur, for example, in a situation in 

which X is a direct report about an event and Y is a report of the report 

(assuming that the originator of Y does not have interpretive information to 

add to the report itself).    Another common class of example arises from 

degradation of the informational content of a technical  sensor (e.g., blurmg 

a photograph, adding white noise to a signal, etc.).    Probably the most banal 

but common examples are those in which information is sinply ignored—as is 

often advocated by management scientists concerned about human capacity limita- 

tions in information processing. 

Our original example on p. 14 can serve as a numerical  illustration of 

the relative effects of less informative information sources.    Assume that 

before selecting a gamble from the set specified on p.  14 the decision maker 

can observe e randoM variable Z with the following conditional  distributions: 

lUJS,) -^   ;   g(z2|S1) -^ 

gUJsj ■ «S   ;   g(zJS?) - wl . ■1|J2' 10 -21-2' 10 

Assume further that instead of observing Z directly, the decision maker 

receives an (unreliable) report X about Z with the following distributions: 

^M 
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h(xl|S1,zl) = 24    '    h(xi ISTZ2) = 24 

h(x2|S1,z1) = 24 ; h{x2\SyZ2) - -^ 

h(xl|S2,z1) = ^ i h(x1|S2,Z2) ■ j% 

h(x2|S2,z1) = 24 ; h(x2|S2,Z2) ■ 24 • 

These conditional distributions of X are independent of S, thus the effect 

of X is simply to b.ur the information contained in Z. Formally Z is at 

least as informative as X since 

hvX|S,Z) ■ h(X|Z). 

The info mation impact of t  with respect to knowledge about S can be in- 

ferred from these distributions as: 

1 2 
h(x1 IS^ = 3  ;  h(x2|S1) = y 

h(x1|S2) ■ f  ;  h(x1lS2) ■ j 

Note that these are exactly the conditional distributions from our original 

example on p. 15. 

Figure 7 plots the EV*-functions for decision functions D based on Z 

and for decision functions E based on X.    The dotted line EV*p(f) represents 

the EV*-function for perfect information.    EV(e,f)  is the EV-function for 

the decision function 2 6 
6 4 

, which is admissible in E but dominated in D. 

c and A indicate the losses the decision maker will incur if the correct prior 

probability is .5 and he uses X as his information source (c), and £ as his 

— . .. - . - — 
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decision function (A). AS long as the prior distributions are not extreme, 

even gross misrepresentations of his prior opinion will cost the decision 

maker less than the loss in information. 

Insert Figure 7 about here 

Especially subtle and important are cases in which the human ^ituitive 

processing of the information, rather than its raw content, renders the in- 

formation less informative. This can obviously happen if that processing 

ignores part of the information. Some interpretations of the well-established 

behavioral phenomenon of conservatism in human probabilistic information pro- 

cessing (see for example Edwards, 1968; Slovic and Lichtenstein, 1971) wojld 

include it within this category. 

It seems clear that Fryback's (1974) data, which originally started us 

thinking about this sort of possibility, fit this case. Fryback found essen- 

tially two sources of major suboptimality. One was a clearly perverse strategy; 

That of performing a costly diagnostic procedure to "rule out" an unlikely but 

anxiety-producing hypothesis, when the alternative is to perform a less costly 

procedure that will in any case be necessary if the more likely, less drastic 

hypothesis is true and that will, if positive, confirm that hypothesis. The 

other was that among his respondents, all expert at reading the kind of x-rays 

he was studying, one was such a super-expert that, even though he used a fairly 

poor strategy in a decision-theoretical sense, he could do very much better 

than anyone else simply because of his radiological expertise. 

The latter source of suboptimality directly fits this case. The former 

does not; it is an example of the kind of error caused by insufficiently deep 

^MMMMH 
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I 

deliberation that we ruled out of consideration at the beginning of this paper. 

Yet even here, better diagnosis, by making the anxiety-producing hypothesis 

exceedingly unlikely instead of merely unlikely, might have reduced the inci- 

dence, and hence the expected cost, of perverse error. 

Our second definition can only be applied in relatively special decision 

problems, but it does not require such strict redundancy as did our first. We 

assume a two states, two acts decision problem, in which the decision maker 

can choose between two gambles 

£, ■ (a, b) 

The only restrictions on the outcomes are that a > b and c < d. Before making 

his decision, a decision maker can observe a value of a random variable X, 

with distribution depending on the states of nature. Finally, we make the 

assumption of a monotone likelihood ratio; that is. 

g(x|s2) 

gWSj) 

gtx'ls^ 

g{x,|s1) 
iff X > X1 

Definition: More sensitive information source. Let the above assump- 

tions be true for two information sources X and Y. Let FV(X|S.) and Fw(Y|S.) 

be the conditional cumulative probability distributions of X and Y, respec- 

tively. X is said to be more sensitive than Y if there exists a transforma- 

tion Y' = Y+C such that 

1) Fy^Y'-iS^ --  Fx(X=z|S1) for all z, and 

2) FY1(Y
,=z|S2) > Fx(X=z|S2) for all z. 

---- i mimmmm 
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These two conditions are equivalent to saying that, given S-j, Fx stochastic- 

ally dominates Fyi, and, given Sp, Fy, stochastically dominates Fx. For a 

definition of stochastic dominance (not to be confused with the concepts of 

ordinal and cardinal dominance defined above) see Lehman, 1959. 

Loosely speaking this definition means that the two distributions of 

X are more separated than the two distributions of Y. More precisely, this 

will be the case whenever Y can be translated so that its two cumulative prob- 

ability distributions lie totally between the two cumulative probability dis- 

tributions of X. 

Theorem 2: Under the above assumptions, let X be more sensitive than Y. 

Let D be the set of decision functions based on X and let E be the set of 

decision functions based on Y. Then for any admissible decision function ^eE, 

there exists an admissible decision function deD that dominates e. 

Proof: Consider Y first. From the Neyman-Pearson lemma (see Lehman, 

1959) and from the monotonicity of the likelihood ratio it follows that any 

admissible decision function eeE must be of the form 

e (Y) M 
i" if Y < x„ — o 

k if Y > x. 

The conditional values of e are therefore 

CV^e) ■ a FyUJS^ ♦ c [l-FyU^)] 

CV2(e) = b FY(x0|S1) + d [l-FyOgS,)]. 

_ 
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Let C be such that the conditions of definition 2 are fulfilled. Consequently 

FY.  (x0*C|S1).Ft (xJS.). 

I 

Now consider X.    Again admissible decision functions dcD must be of the form 

d(X) 

L if X    <  x  ' -   o 

32 if   X    > x  ' 

Let x^' = x„ + C. Then the conditional values of d are oo = 

CV1 (d) - a  Fx(xo ♦ CIS^ + c [l-,:x(x0 ♦ C^)] 

CV2 (d) = b  Fx(xo + C|S2) ♦ d [1-Fx(x0 ♦ C|S2)]. 

To prove the theorem, all we will shjw is that 

CV.Ci) > CV. (e) . i=l, 2. 

By assumption 

a > c  , b < d. 

Furthermore, by stjchastic dominance (1  and 2) 

Fvi   (xn + CIS,) - rY(x   |3,)  < Fy   (xn ♦ CIS,) and Y'   ^o I'      "Y^o^r      'X  ^o 

FY. (. ♦ cjs,) - FY(Xjsj > Fy u ♦ c;sj Y'   v o 2'      'Y^o1   2'      "X  v/No 

Therefore 

a      Fy  IK + cisi) + c [1-FY  (xn + CIS,)] X  v o X  v o 

■M 
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a     FY (xJS^ + c [l-FY(x0|S1)] a nd 

b     Fx  (xo + C|S2) + d C1-FX(X0 + C|S2)]  > 

b     FY (x0|S2) + d [l-FY(xo|S2)] 

which establishes the fact that for any admissible decision function ^EE 

(with corresponding cutoff value xo) there exists a decision function ieD 

(with corresponding cutoff value xo + C) that dominates e. 

The following military decision problem illustrates the concepts of 

sensitivity of observations.    A commander of a battleship observes an 

unidentified ship moving towards his own ship.    Attempts to establish radio 

contact with the oncoming ship fail.    He has to decide whether or not to 

attack, considering that the sMp may be either an enemy (S1) or an ally (S2) 

Assume that the only information which differentiates between the two states 

of the ship is its length and that an enemy ship is longer than an allied 

ship.    The commander can obtain a length estimate from his own position 

(Y) or from a nearby ally ship which has a better angle and is closer to 

the unidentified ship (X).    Assuming normal measurement errors, let 

FY(.|Si) - N(mi, s)    a nd 

FY(.|S.) " rUm.', s), and assume that the better position of 

the allied observer is expressed  in the fact that   ny-ry  > ir^-n^.    We can 

now show that X is more sensitive than Y. 

Since 

0 < m,  - nu < m, '   - nu1 

MA tfHMHMMH mm^m^mt i 
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we can find a C such that 

m2'  < !Ti2 + C < ni1  + C < m '. 

Let Y1 = Y+C.    Since all distributions involved are normal differing only 

in mean, it immediately follows that 

Fx  (X ■ ZJS^ > Fy,   (Y'  ■ z\S}) for all  z,        and 

Fx  (X ■ 2|S2) < FYI   (Y
1  = 2|S2) for all  z. 

Also, since all distributions are normal, with equal variance, the likelihood 

ratio is monotone.    Therefore, all conditions of our definition are fulfilled, 

and X  !s more sensitive than Y. 

The conclusion that decision functions based on X will dominate decision 

functions based on Y can be demonstrated with the following payoff matrix: 

Enemy Ally 

attack 

do not c'ttack 

Further specifications are that s=l, öPH that n.  - n,- d»1  =1, and that 

"V  ' "V = V = ^    Fl9ure 7 Plots ttle conciitional  values fnd demonstrates 

that admissible decision functions based on Y are dominated by admissible 

decision functions based on X.    Figure 8 shows the corresponding FV*-functions 

EV*E and EV*D together with some potential  losses due to dominance and sub- 

optimal ity among admissible decision functions. 

Insert Figures 7 and 8 about here 
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Our final definition of the efficiency of infomuition is motivated by its 

ability to reduce the variance of the posterior probability distribution over 

the states of nature. We have to assume that state and act spaces are real 

valued, and that the value function is quadratic in both. Specifically, if 

the state of nature is s and the decision maker selects g, then his outcome 

will be K - (s-g)2. 

Definition: Precision of information. Information X is said to be more 

precise than information Y if and only if 

m * 
E{VAR[S1X]} ■ E g(x.) VAR [S|x.] < I    h(y ) VAR[S|yr] - E{VAR[S|Y}   (13) 

i=l   J       J   r=l 

where VAR(S|x.) is the variance of the (posterior) distribution, if X=Xj. 

Let- e be a decision function based on Y and let d be a decision function 

based on X. The following is a standard result in statistical decision 

theory (see Ferguson, 1967; DeGroot, 1970): 

Lemma 4   Under the above assumptions the expected values of a decision 

function e and a decision function d are 

m 
EV(d. f) = K - E g(x.) VAR (Sjx.) - Z T(xi) [E(S|xi) - d(x.)] 

j-1 j = l 

(14) 

EV(i, f) = K - E h(yr) VAR (S|yr) - E h(yr) [E(S|yr) - i (yr)]
2.    (15) 

r=l r=l 

The second term of both expected value formulas is the expected posterior 

variance and corresponds to our definition of precision of the information X 

and Y. The third term can be made equal to zero by letting 



^i'^ " 'i"'^rmmm^mmrimm^mi'<<'    <i '» 11 H i. M . nm*mmi*m^m**mmmm***^**~*'~~m* < •  «i    . <   > »mm w    m   n i   uiiiiik.ii i   mvmmmmimmmmwt 

39 

älxJ ■ E(S|x.)   and 
J      J 

i(yr) ■ E(S|yr), 

The following theorem is an immediate consequence of the lemma: 

Theorem 3: Assume that the value function is quadratic in the state and 

act variables. Assume that information X is more precise than information Y. 

Then for any decision function e based on Y there exists a decision function 

d based on X that dominates g. 

Proof: By assumption 

m £ 

I    g(x ) VAR (S|x.) <  I h(yJ VAR (S|y ). 
j=l  J      J   r=i  

r      r 

Now tak? any gtE  and choose d such that d (x.) = E(S|x.). Then 
j      j 

■ 
EV(d, f) = K - E g(x.) VAR (S|x.) > 

j=l   J       J 

1
 « 

K - I   h(yr) VAR (S|yr) - E h(y ) [E(S|yr) - e (y)]2 = EV(e, f), 
r-l r=l '      ■ 

So that for any £cc there exists a deD such that 

EV(d, f) > EV(e, f) 

independent of the prior distribution f. Since there is no prior distribution 

for which gel  would be optimal, it follows (see Ferguson, 1967), that e must 

be dominated. 

As an example, consider the following simple inventory problem. The 

decision maker has to stock his store with a certain supply S of some good. 

His profit will depend on the unknown demand D. Assume that his profit for 

■M _^M^MBn ■»».  
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any supply/demand situation can be expressed as 

V(S,D) ■ K - (S-D)2. 

Before purchasing the good, the decision maker can observe a random variable X 

with distribution depending on the true demand D. Specifically, we assume 

that g(X|D=d) is normal with expectation d and variance sx . Another random 

variable Y also has a distribution depending on D which is normal with ex- 

pectation d and variance ly2. Assume s/ > s/. Under these conditions, we 

can show that X is more precise than Y, if the prior distribution over the 
2 

demand is also normal with mean d and variance s . 

The following is a standard result for the above conjugate distributions: 

VAR(D|X) ■ (1/s2 + 1/ sx
2) '] 

VAR(D|Y) = (1/s2 + 1/ Sy2)"1 

Since both conditional variances are independent of the specific values of 

2    2 X and Y, and since sx < sY , we have 

VAR(D|X)  VAR(D|Y)   for all X and Y, and 

E{VAR(D|X)} < E{VAR(D|Y)}. 

That is, X is more precise than Y. 

The loss due to dominance of Y is (-2 + —^   " ^_2 + " 2'    ' 1 x-1 1 x-1 

Losses due to suboptimality among the admissible decision functions based 

on Y are quadratic with a minimum at 

- - 
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e(Y) ■ E(D|Y) 

i.d ♦ 1 s      s« 

1 ♦ i 
S      Sw 

The proof shows us a convenient way to partition the losses into those 

caused by the selection of a less precise information source and those caused 

by an additional suboptimality of the decision function based on that infor- 

mation source. Let e be a suboptimal and dominated decision function based 

on Y. Then the loss resulting from choosing g instead of the optimal d is 

I M I 
EL{e, f) -    { I    h(yj VAR{D|yr)  -      E    gUJ VARlDlx.)}    ♦      I    h(yr) 

r=l j=l       J J r«1 

[E(D|yr) - l{yr)]
2 (16) 

The second part is a quadradic function with a minimum at e(yr) = E(Dlyr). 

It is subject to the flat maximum property, since it represents suboptimality 

among the admissible decision functions in E. The first part is caused by 

the inefficiency of the information variable Y relative to X. This loss .s 

restricted only in the limits between 0 and the variance of the prior distri- 

bution. 

There probably are other definitions of efficiency of information sources 

that lead to similar conclusions about dominated decision functions, but the 

three definiJons used here not only illustrate the main point, but also cover 

a rather wide . nge of decision problems. The main conclusion is that for all 

three definitions of efficiency we find that inefficient use of information 

can, and nomally will, lead to use of a dominated decision strategy that may 

cause large losses for the decision maker. 

M^^MM 
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Discussion 

Our message is this. If a decision problem is properly structured and 

optimal use has been made of the best relevant information bearing on it 

(taking into account if necessary the costs of doing so compared with the 

costs of using inferior information or none), a decision maker can be fairly 

sure of making a fairly good decision, though not necessarily the optimal 

one, even if his prior opinions have been inaccurately elicited. The mathe- 

matics behind this assertion state it as a typical but not inevitable result; 

they naturally say very little about any specific decision problem. Still, 

they suggest that formulating the problem and processing the information are 

the heart of the task; elicitation of probabilities (and of values, though 

that topic is more complicated) are secondary. 

Tne mathematics also offer analysis of admissibility and of EV*-functions 

as important tools of sensitivity analysis. In a way, EV*-functions are loss- 

generating functions. Their shapes and differences control sensitivity in 

specific decision problems. Whether or not our typical (flat maximum) result 

holds in a specific problem can often be inferred, even without formal analysis, 

by determining boundary losses by means of EV*-functic«is; for example, by 

comparing losses with no information to losses with perfect information; or 

by imposing boundaries on the ranges of prior distributions or of admissible 

decision strategies. 

We are just beginning to understand the problem of sensitivity in 

decision analysis. So far we have only looked at losses produced by 

1) incorrect assessment of prior distributions; 

2) suboptimal  but admissible decision making; 

3) inadmissible decision making; 

4) inefficient information processing. 

i^M 



3) specific tools for sensitivity analyses in particular 
decision problems. 

So far our answers are still very incomplete. Generally, we think that 

admissibility analysis and the information processing part are more loss 

sensitive in decision analysis than are actual admissible decision making 

among admissible options, or elicitation of prior distributions. We gave 

some examples and some tools for sensitivity analysis—the former probably 

too specific, the latter definitely too general. But in spite of the incom- 

pleteness of what has been done, we think our two main results are useful 

both to decision analysts and to research on decision theory  Tor analysts, 

we have already suggested that the structuring and information processing 

parts of the analysis—the hard parts—are also the important ones; most 

analysts knew that already. For researchers, our message is that research 

on the merits of information sources, on optimization of information proces- 

sing, and on formulation of decision problems is more important than work on 

precise elicitation end optimization procedures. 

——————    '    ■    ~   ■ tf -j-   ■ i. .*. - '    tt-'h' it',;mmm***mmmmmmmmtm 
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Nothing is known yet about other errors in decision analysis, such as leaving 

out value dimensions, not considering all available action alternatives, not 

specifying states of nature or information sources finely enough. 

Ideally, a general approach to the sensitivity/insensitivity issue in 

decision analysis should provide the decision analyst with three kinds of 

information: 

1) a rank order of the parts of a decision eialysis according 
to their typical sensitivity/insensitivity; 

2) examples that fit certain decision problems through simpTe 
parametrization; 

MMMH 
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